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Abstract. Quenching of the Hall effect in quasi-iD samples has been shown to be caused by 
a new quantum mechanical phenomenon in the low-magnetic-field regime wherein a current 
has been found to counter the current driven by the Lorentz force. This current is driven by 
the phase slip created between the two edges by the Hall voltage developed by the magnetic 
field. It has a very low frequency. The critical value of the magnetic field where the Hall 
effect appears has been estimated and found to be in good agreement with the experimental 
value. It is suggested that the qUaSi-lD devices may prove useful as high-speed switches. 

In a seemingly unending series of interesting new phenomena unravelled by exper- 
imental and theoretical work on the Hall effect in different regimes of interest, ‘quench- 
ing’ of the Hall effect in quasi-one-dimensional (ID) systems at very low magnetic fields 
has also been recently reported [l]. We explain this new result here. It is shown to be 
due to an intrinsic Josephson-type effect in narrow Hall devices recently predicted by 
the present author [2]; the result in question is a manifestation of the low-frequency 
limit of this effect. Thus the quenching of the Hall effect provides an experimental 
confirmation of the predicted AC effect although only in the lowfrequency limit. 

First, we should understand the physical implications of the quenching phenomenon 
which may give us a clue to understanding the result. Recall the basic equation for the 
resistivity tensor pertaining to the Hall effect in ZD. It can be written as a pair of 
simultaneous equations 

and 

where an appliedJ, in the ( + ) x  direction establishes E, and a magnetic field B, gives rise 
to aJy in the (+)y direction which is soon stopped by the establishment of the Hall field 
Ey pointing in the ( - ) y  direction; p,, are the elements of the resistivity tensor. The 
quenching of the Hall effect means that pxy = -pyx = 0 which can happen if 

and 

simultaneously. The condition (2a) implies that the current density J,, parallel to E,, is 

t Permanent address: School of Physics, University of Hyderabad, Hyderabad 500134, India. 

J y P x y  = E ,  - P X X J ,  

J X P ,  = E,  - P y y  J y  

(la) 

E,  = P x x  J ,  

E,  = P Y Y  JY (2b) 
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driven entirely by E, in spite of the presence of B,, and we see from (2b) that such a 
situation can be created only if a J, flowsparallel to E,, i.e. in the (-)y direction, such 
that the condition (2b)  is fulfilled. That is, ‘something’ should start a current equal in 
magnitude but opposite in direction to the current J, generated by the B,, so that it can 
exactly cancel the influence of the latter. This effect will stop the Hall voltage from 
developing between the edges of the sample and will thus check the Hall resistance from 
rising above zero. So we have to understand what can give rise to a current equal and 
opposite to the Hall-J,. We suggest that this current can be caused by the phase difference 
between the opposite edges of the sample. It is supposed to be present in the narrow 
Hall devices all the time in the Hall set-up [2] but, in the present situation , it plays a 
crucial role owing to its very low frequency, so low so that the wavelength of the current 
is larger than the width of the sample. 

To start, we briefly recapitulate the results of [2].  It was shown that, if the edges of a 
narrow 2D device are at a different electric potential due to the presence of a B, and if 
the width of the sample is of the order of the phase coherence length so that the states 
at the two edges can be taken to be coupled, then a current arises from a transition 
between a state in which an electron is on one side and a state in which it is on the other. 
Thus the relative phase of the two edges oscillates at a beat frequency given by 

a q / d t  = eVH/fi (3) 
where Q, is the phase difference between two points at the opposite edges (defined 
modulo 2 n )  and V,  is the Hall voltage. The oscillating o, drives an AC of the same 
frequency and is given by 

where], is the critical current when Q, = n / 2 .  The coupling of the two edges reduces the 
system energy by an amount 

J = J, sin Q, (4) 

E ,  = (hJ,/e) cos Q,. ( 5 )  
Now, coming to the present problem, we note that when B, = 0 the edge currents 

are no longer well defined because the electron distribution will be more or less uiniform 
across the width of the sample. So, we cannot talk in terms of the wavefunctions localised 
along the edges; instead we have a very flat wavefunction as wide as the sample which is 
represented as 

where I V(r) l 2  is the electron density which remains almost constant across the width and 
a! is the phase explained in detail in [2].  For this slowly varying v ,  we can write in they 
direction (i.e. along the width) 

v(r> = I v ( 4  e x p M r > l  (6) 

where p, ,  vy and A, are the y components of the momentum, velocity and the vector 
potential (defined as B = V x A ) ;  m* is the effective mass of the electron. This gives us 
a current in the y direction (we shall see later whether it is +y or -y) 

J ,  = (Iv12e/m*>[h(aa!/aY> - (e/c)Ayl. (8) 
If the width is very small, we can write it as 

where the quantity inside the parentheses is the ‘gauge-invariant phase difference’ 
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between the opposite edges designated as 1 and 2; al and a2 represent the phases at the 
two edges, and w is the width of the sample. In the limits of vanishing w and vanishing 
B ,  the integral in (9) goes to zero$. So, for the quasi-ir, samples under a vanishing 
magnetic field, we can write, 

J y  = J o y  J o  = /q12efi/m*w cp 3 a2 - al. (10) 
This is nothing, but the small-cp limit of equation (4) for the quasi-ir, system. The cp can 
be small if, firstly, the phase coherence is very good and the phase is uniform across the 
width, so much so that we can call the system to be in a state of ‘near phase rigidity’ and, 
secondly, VH = 0, because, as we see from equation (3), VH can cause the phases at the 
edges to slip with respect to each other. Both these conditions are met in the quasi-ir, 
samples ( w  = 100 nm) when B, = 0 and, therefore, equation (10) pertains to the systems 
and conditions of our interest here. The E, can be written for them as 

E ,  = 1q12h2/8n2m*w (forcp E O ) .  (11) 

Note that E, cc w-l and, more importantly, E, B kBT even for T as low as 1 K (the 
experiments in [l] were performed at T = 4 K). The latter is of great significance in that 
it allows a great deal of inter-level scattering without changing the energy of the system 
and so the ‘near phase rigidity’ is not disturbed. For B, = 0, the Landau quantisation is 
almost not there and the granularity of the energy levels due to the quasi-one dimen- 
sionality is also comparable with k,T. Both these factors can give rise to a considerable 
amount of inter-level scattering at T = 4 K. In spite of this the phase rigidity remains 
unaffected owing to large E, in the present case. 

In the light of all this, we can understand the quenching of the Hall effect. Let us 
proceed in a systematic manner. Suppose at t = 0 we have cp = 0 and B, = 0; then J y  = 
0 and E, is at its maximum. Now B, is switched on. The electrons will be deflected to one 
of the edges, say edge 1. Consequently, the potential at edge 2 will go up and along with 
it the phase will also rise (see equation (3) where cp = az - al). Since the phase-driven 
current flows from the higher phase to the lower phase [2] ,  the phase-difference between 
edges 1 and 2 created by B, will tend to drive the electrons from edge 1 to edge 2 (i.e. 
the current flows in the ( - ) y  directon, parallel to the Ey ,  the Hall field). Thus, on the 
one hand, B, deflects the electrons to edge 1 and, on the other hand, the potential 
difference and the phase difference created as a result of this drive the electrons away 
from edge 1 towards edge 2. The balance between these two competing forces should 
decide which way the net current will eventually flow, but it is also clear that the flow of 
the electrons from edge 1 to edge 2 under the ‘phase stress’ will steadily reduce the VH 
until it becomes zero and with it the phase-driven current will also go to zero. So the 
phase-driven current will never supersede the current caused by the Lorentz force and, 
whenever the balance is disturbed, this will lead to the development of a net V,. 

It is crucial, for the above effect to happen, that the phase-driven current remains 
‘effectively’ DC in spite of the development of VH 9s B, is switched on. This can happen 
if a quarter of the wavelength I.  of the phase-driven current is at least as large as the width 
w of the sample-the requirement imposed means that before the coupling energy E, 
reduces to zero (which happens when cp = n / 2 )  and begins to become negative (see 
equation (5)) the electrons driven by the phase difference should reach edge 2. As 
some of the electrons reach edge 2 ,  VH is reduced. Consequently the frequency ag?/dt  
$ Note that the integral in (9) goes as w/la, where Io is the cyclotron radius (A,  - B - l o 2 ) .  This approaches 
zero very rapidly as B +. 0. For a given small w ,  although cy2 - cy1 will be very small, yet for B = 0 the integral 
will be negligible compared with cy2 - cy, because of the stronger loz dependence in it. 
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decreases and A increases; further, the coupling energy E, increases which facilitates the 
flow of electrons to edge 2. In this cumulative manner, V H  approaches zero and we find 
that VH cannot be maintained without accelerating the phase-driven current. This should 
enable us to estimate the critical value BC,' of the magnetic field up to which (starting 
from B, = 0) the Hall effect will remain quenched. Note that equation ( 3 )  can be 
represented as 

V,il = hc/e (12) 

U ,  = V H / w B ,  (13) 

where A is the wavelength of the phase-driven current. Classically, V H  obeys the equation 

where u,is thevelocity of electronsinequilibrium in thexdirection. Since u,ismaintained 
constant, V H  0: wB,, and, if VC;; is the classical value of V H  corresponding to BC,' up to 
which il 3 4w, then 

BC,' W E ,  = BC,'4w2 = hc/e. (14) 
This yields BY = 0.1 T for w = 100 nm which is in excellent agreement with the exper- 
imental result [l]. It was assumed here that cp = 0 at t = 0 which may not be strictly 
correct. If cp was non-zero to start with, E, would be less than its maximum value at t = 
0 and BC,' would be less than 0.1 T, becoming closer to the experimental estimate. One 
can alternatively arrive at the same estimate by equating the J y  in equation (10) to the 
classical J y  generated by E, and B,, which is simply the requirement for the quenching 
of the Hall effect. Note that BC,' 

As B, exceeds the above critical value, the condition on w and A will break down and 
the current will get its AC character restored within the length scale of w which means 
that the accumulation of electrons on edge 1 due to B,  will remain largely undisturbed. 
The Hall resistance, as a result, will begin to rise above zero and will more or less follow 
the classical trend apart from some fluctuations about the classical value until the AC 
frequency is high enough to become self-averaged. At sufficiently high B,  the system 
will go into the quantised Hall conditions [ 3 ] .  

To synthesise all the results, we first recall that the quantised Hall effect [3] comes 
into being when, in a ZD system at low T and high B,, the current J,  is driven entirely 
by Ey, the Hall field. This gives the result p,, = a,, = 0 (oXx represents the diagonal 
conductivity). We find here that the supposedly classical regime of B,  = 0 turns into a 
quantum mechanical one if at low temperatures the system is narrowed down to become 
quasi-io, and a new phenomenon sets in-the phase-driven current [2] which remains 
dormant at high B, (in that it self-averages owing to its high frequency) plays aprominent 
role when B, = 0 and stops V H  from developing under the influence of non-zero B,. This 
gives a situation represented by pXy = oxy = 0 and the j, being driven entirely by E,. (In 
intermediate situations when the Hall effect is neither quantised nor quenched, J ,  is 
driven by both E, and Ey.) In a ID system, one does expect that pxy will be zero always, 
i.e. there will be no Hall effect in them. However, what we find here is that even in the 
quasi-1D system the Hall effect can be quenched by a new underlying phenomenon and 
that in the limit of w = 0 (i.e. one-dimensionality) the Hall effect will remain quenched, 
in accordance with BC,' cc w - ~ ,  for any value of B,. For w gmall but non-zero, the crossover 
from ply = 0 to pxy > 0 at BC,' can be understood as a 'dimensionality crossover' from 
effectively ID to ZD. For B, > BC,' the Landau level spacing (approximately heB/m*c; m* 
being the effective mass) becomes larger than the level spacing (approximately h2/m* w') 
for the quasi-iD system of width w ;  in other words the magnetic length lo = (h/eB)"* 

w - ~ .  
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becomes less than the sample width w. This recovers the proper 2~ (magnetic) behaviour. 
It is interesting to note that the criterion heBC,'/m*c = h2/m*w2 also yields the wW2 
dependence for BC,' as obtained earlier from equation (14); also the value of B y  obtained 
from this criterion is very close to the value obtained from equation (14). This indicates 
that there is an intimate relationship between the quenching of the Hall effect (as 
deduced from the discussion up to question (14)) and the fact that the system does not 
behave two-dimensionally (in so far as the fact that Landau quantisation does not exceed 
the quasi-iD level separation is concerned). 

In [4] a classical argument was proposed for the quenching of the Hall effect. Their 
argument, in simple terms, is that when 210 > w the electrons are bouncing against the 
two edges randomly and, therefore, the Hall voltage is not developed. In a forthcoming 
paper, we have proved that this is not enough for the quenching phenomonon to occur. 
We obtain a precise (classical) condition for the quenching which is too strict to be met 
in an experiment. 

The low-B, phenomenon discussed here suggests that the quasi-iD devices can be 
useful as high-speed switches. To be more explicit, note that equation (3) can be written, 
for a general V (which can be applied externally as well), as 

q = qo  + (eh)Vt q o  = q ( t  = 0) .  (15) 
When V = 0, the phase is uniform and 'rigid' across the width m d  we get J, = 0 from 
equation (10). However, if Vt = h/4e and q o  = 0 because the phase is uniform at t = 0, 
then q = n/2 and], = J o ,  i.e. the maximum current flows from edge 2 to edge 1. In other 
words, if between the two edges a certain V is developed (externally and not by the 
application of B,) and is maintained for time t such that Vt = h/4e, then the system will 
draw the maximum phase-driven current of amount J o  in the transverse direction. The 
current will go to zero as soon as Vis lifted if, in the quasi-iD device, the electrons that 
have moved to edge 2 are drawn into a circuit. To estimate this, note that the above 
condition can be met by applying, for example, a voltage V = 1 pV for 1 ns. The narrower 
is the device, the larger will be J o  and, from the point of view of application, it is also 
important to note that E, - w-' so that one can use relatively higher temperatures for 
narrower devices without affecting the phase rigidity. It is important that B, should not 
be used to generate the voltage across the edges, for firstly it will not be able to do so 
until B, > B f ,  and secondly above BC,' the electrons will not be able to cross over to 
edge 2. It would be interesting to study the quasi-iD Hall devices for the above purpose 
and to ascertain their merits and demerits in comparison with the Josephson devices. 
For instance, the quasi-iD Hall devices must be very cheap and reliable as one expects 
from the fact that they are now routinely fabricated. 

Acknowledgments 

Thanks are due to M Pepper, T J Thornton and C J B Ford for discussions. This work 
was supported by the Association of Commonwealth Universities, the University Grants 
Commission (India) and the University of Hyderabad. 

References 

[1] Roukes M L, Scherer A ,  Allen S J, Craighead H G,  Ruther R M, Beebe E D  and Harbison J P 1987 Phys. 
Rev .  Lett. 59 3011 



2030 V Srivastava 

[2] Srivastava V 1988 J .  Phys. C: Solid State Phys. 21 L815 
[3] von Klitzing K, Dorda G and Pepper M 1980 Phys. Reu. Lett. 45 494 
[4] Beenakker C W J and van Houten H 1988 Phys. Reu. Lett. 60 2406 


